UNCLASSIFIED) CQ
SECURITY CLASSIFICATION OF TWIS PAGE (When Dats Entered)
REFQRT, DOCUMINTATLAY PAGE prreterietiey,

BEFTHE TOMF _E LN FOPA
1. REPORT NUMBLR unb FILL VUL V2. eovy accession mo. 3. RECIPIENT'S CATALOG MUMEiR

4. TITLE (andSubtitie)

5. TYPE OF REPORY 8 PERIOD COVERED
Ada Compiler Validation Summary Report: SYSTEAM, | 3 ynoy 89 - 1 Dec 90
' €3 Ada Compiler Version R00-00, Concurrent Computer

. 8. PERFORMING DRG. REPORT MUMELR
i nder RTU version 4.0A (host & target))
Corporation 5600 u host & farset)

]
L
[7. AUTHOR()

TABGy
i Ottobrunn, Federal Republic of Germany.

== 0. PERFORMING ORGANIZATION AND ADDRESS

10. PROGRAM ELEMENT, PRIVEZT, TASK
AREA & WORK UNIT NUMEERS
AN 14zc,

8. CONTRACT OR GRANT MUMEER(s)

9 494

Ottobrunn, Federal Republic of Germany.

l 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE
Q Sda nggt Progéam Office £ Def
nited States Department of Defense b=
« Washington, DC 20301-3081 ‘ ‘
14, MONITORING AGENCY NAME & ADDRESS(/f g:fferent from Controlling Office) 15. SECURITY CLASS (ofthisreport)
IABG UNCLASSIFIED
? . - - -
Ottobrunn, Federal Republic of Germany. 18- EE&SEEE”“”O" DOWASRAZING

N/A

18. DISTRIBUTION STATEMENY (of thus Report)

Approved for public release; distribution unlimited.

17, DISTRIBLTION STATEMINT (of the abstractenteced nBiock 20 if o.tHerent from Repor)

UNCLASSIFIED DT]C

ELECTE |

DQ

19. KEYWDRDS (Continue onreverse s:0e if necessary and identify by block number)

18. SUPPLEMINTARY NCTES

Ada Programming language, Ada Compiler Validation Summary Repcrt, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue onreverse s:de if necessary ond dent.fy by dlock number)

SYSTEAM, C3 Ada Compiler, Version R00-00, IABG, West Germany, Concurrent Computer
Corporation 5600 under RTU Version 4.0A (host & target), ACVC 1.10

DD 'V 1473 £D1viON OF 1 NOV 65 1S OBSOLETE
13an 73 $/N 0102-LF-014-8601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WhenDets Entered)

v

AVF Control Number:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #89110311.10199
SYSTEAM
€3 Ada Compiler Version R00-00
Concurrent Computer Corporation 5600
under RTU version 4.0A

Completion of On-Site Testing:
3rd November 1989

Preparad By:
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

@ 0534 036

IABG-VYSR-047

ada

omviler Hare: <3 Ada Coapiler

Varsion R00-GO

Certificate Mumber: #891103I11.1015%

Host and Target:

und=r RTU vzrsion

Testing Completed Friday, 3rd Hove

This raport has been re

s

IABG nbH, Abt SZT
Dr 5. Hellbrunner

Einste=instr 20
D8012 Ottoabrunn
Vest Gerrany

.
/0 ; ‘
e / s
A AL S04l 8F
3da VYalidarion Organization
pr. John 7. Xramer
LnSfl ntc ror Defense Analyses

4’.bJ1L

‘i3 Jnint 9rnnram Office
Jr John Solomend
Dirvacror

Departnant of Defense
4shington DT 70301

'~<J

mher 1989 Us

4 PR

Compiller Validation Summary Report:

Concurrent Computeéer Corporation &

4.04

viewed and 1s approvead.

ing 20U 1.

250

19

Accesion For

NTIS CRA&L
Diic TaB
Undnnonesd
Juitficatee:n

By ...

Dist: l"‘ RN

Ay aife

i A\.ri»l
ii;, Cid)

u'or

zifnty Codes

e i e

4

W q‘
R4

CHAPTER 1

CHAPTER 2

CHAPTER

()

. « s 8
D BE IS IS B N LI SOV S
.

W W w W wWwww
.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION &« ¢ ¢ v ¢ o v e o o o o o &

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES . . ¢ & ¢ v v v v ¢ o o v o o o o o «
DEFINITION OF TERMS« . . . « . . .
ACVC TEST CLASSES . . .+ . «. ¢ v ¢ ¢ v o o o & &

CONFIGURATION INFORMATION « « ¢« « « . &

CONFIGURATION TESTED e e e e .
IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION e e e e e e s

TEST RESULTS e e e e e e e e e e
SUMMARY OF TEST RESULTS BY CLASS . . . « . ¢« « .
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS . & & ¢ 4 ¢ ¢ ¢ ¢ o o o o o o o &
INAPPLICABLE TESTS
TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION

Prevalidation ¢« & ¢« ¢ + ¢ « o & e . .

Test Method ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o« o o &

Test Site . . ¢ ¢ & ¢ ¢ 4 ¢ ¢« v o o o o o @ .

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

COMPILER AND LINKER OPTIONS

-

B W W

-~ 3

. 14

14
14
15
15
15

. 19

19
20

. 21

INTRODUCTION

CHAPTER 1

INTRODUCTION

/

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.)

Even though all validated Ada compilers conform to the Ada Standard, it
must be understocd that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies~-for example, the
maximum 1length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that 1is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution. /. -

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

IR —S—, —

INTRODUCTION

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 3rd
November 1989 at SYSTEAM KG, Karlsruhe.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.s.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081
or from
IABG mbH, Abt. SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

- INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

INTRODUCTION

Inapplicable An ACVC test that wuses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, ¢, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language {other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal 1language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada progranms
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. 1If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and —check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Bach Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject progranms
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file nanme. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an 1illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:
Compiler: <3 Ada Compiler Version R00-00
ACVC Version: 1.10
Certificate Number: #891103I1.10199
Host and Target Computer:
Machine : Concurrent Computer Corporation 5600
Operating System : RTU Version 4.0A

Memory Size : 8 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those aresas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests 1in other «classes alsoc characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing 1loop

~2

T T EEE———,

CONFIGURATION INFORMATION

statements nested to 65 levels. (See tests DSS5A03A..H
(8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. (See test D56001B.)

4) Tae compiler <correctlv processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D6400SE..G (3 tests).)

Predefined types.

1} This implementation supports the additional predefined types
SHORT_INTEGER, LONG_FLOAT and LONG_LONG_FLOAT in the
package STANDARD. (See tests B8600L1T..Z (7 tests).)

Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions
for record components are evaluated before any value 1is
checked for membership in a component's subtype. {See test
C32117Aa.)

2) Assignments for subtypes are periormed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

4) No exception 1is raised when an integer literal operand in a
comparison or membership test is outside the range of the
base type. (See test C45232A.)

E) No exception is raised when a literal operand in a fixed-
point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

CONFIGURATION INFORMATION

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1} The method used for rouading to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to 1longest integer 1is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. {(See test
C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

This implementation evaluates the 'LENGTH of each constrained
array subtype during elaboration of the type declaration. This
causes the declaration of a constrained array subtype with more
than INTEGER'LAST (which 1is equal to SYSTEM.MAX_INT for this
implementation) components to raise CONSTRAINT_ERROR. However the
optimisation mechanism of this implementation suppresses the
evaluation of 'LENGTH if no object of the array type is declared
depending on whether the bounds of the array are static, the
visibility of the array type, and the presence of local
subprograms. These general remarks apply to points (1) to {(5), and
(8).

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises no exception if the
bounds of the array are static. (See test C36003A.)

2) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components if the bounds of
the array are not static and if the subprogram declaring the
array type contains no local subprograms. (See test C36202A.)

3) (CONSTRAINT_ERROR is raised when an array type with
INTEGER'LAST + 2 components is declared if the bounds of the

4)

5)

6)

7)

8)

]——— —

CONFIGURATION INFORMATION

array are not static and if the subprogram declaring the
array type contains a local subprogram. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT_ERROR when the array type is declared if the
bounds of the array are not static and if there are objects of
the array type. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when the
array type 1is declared if the bounds of the array are not
static and if there are objects of the array type. (See test
€52104Y.)

In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR 1is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A1.)

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC_ERROR or
CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, 1lengths must match in array slice
assignments. This implementation raises CONSTRAINT_ERROR
vwhen the array type is declared if the bounds of the
array are not static and if there are objects of the array
type. (See test E52103Y.)

f. Discriminated types.

1)

In assigning record types with discriminants, the expression
is not evaluated in its entirety before
CONSTRAINT_ERROR 1is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

10

CONFIGURATION INFORMATION

Aggregates.

1)

In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated Dbefore
checking against the index type. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before Dbeing checked for
identical bounds. (See test E43212B.)

J) CONSTRAINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. {See test
E43211B.)

Pragmas.

1) The pragma INLINE is supported for functions and procedures.
(See tests LAJOO4A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

Generics.

1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CAlO012A, CA2009¢C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be compiled
in separate compilations. {See tests CAl012A and CA2009F.)

3) Generic library subprogram specifications and bodies can be
compiled in separate compilationms. (See test CA1012A.)

4) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

6) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be compiled in

separate compilationms. (See tests CA2009C, BC3204C, and
BC3205D.)

11

8)

9)

CONFIGURATION INFORMATION

Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output.

1)

2)

3)

4)

5)

6)

7

8)

9)

10)

11)

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

The package DIRECT_IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. However this implementation
raises USE_ERROR upon creation of a file for unconstrained
array types.(See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IOC.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE, OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K AND CE2102Y.)

RESET and DELETE operations are supported for text files. (See
tests CE3102F..G (2 tests), CE3104C, CE3110A, and CE3114A.)

Overwriting to a sequential file truncates the file to the
last element written. (See test CE2208B.)

Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

12

12)
13)

14)

15)

CONFIGURATION INFORMATION

Temporary text files are not given names. (See test CE3112A.)

More than one internal file can be associated with each
external permanent (not temporary) file for sequential files
when reading only or writing only. (See tests CE2107A..E
{5 tests), CE2102L, CE2110B, and CE2111D.)

More than one internal file can be associated with each
external permanent (not temporary) file for direct files when
reading only or writing only. (See tests CE2107F..H (3 tests),
CE2110D AND CE2111H.)

More than one internal file can be associated with each
external permanent (not temporary) file for text files when
reading only or writing only. (See tests CE3111A..B (2 tests),
CE3111D..E (2 tests), CE3114B, and CE3115A.)

13

TEST INFORMATION

CHAPTER 3

TEST INFCRMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors.
The AVF determined that 265 tests were inapplicable to this
implementation. All inapplicable tests were processed during
validation testing except for 159 executable tests that use
floating-point precision exceeding that supported by the
implementation. Modifications to the code, processing, or grading for 14
tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L

Passed 129 1132 2057 17 27 46 3408
Inapplicable 0 6 258 0 1 0 265
Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

14

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 g 10 11 12 13 14
Passed 201 590 566 245 172 99 I61 331 137 ;;-—;52 325 293 3405
N/A 11 59 114 3 0 0 5 1 0 0 0 44 28 265
Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this wvalidation:

E28005C A390056G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2a63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2AT3A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2AT6D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 TINAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 265 tests were inapplicable for
the reasons indicated:

15

TEST INFORMATION

The following 159 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX _DIGITS:

C241130..Y (11 tests) €357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
€357080..Y (11 tests) €358020..2 (12 tests)
C452410..Y (11 tests) €453210..Y (11 tests)
€454210..Y (11 tests) €455210..2 (12 tests)
€455240..2Z (12 tests) €456210..Z (12 tests)
C456410..Y (11 tests) €460120..2Z (12 tests)

C34007P and C34007S are expected to raise CONSTRAINT_ERROR. This
implementation optimizes the code at compile time on lines 205 and
221 respectively, thus avoiding the operation which would raise
CONSTRAINT_ERROR and so no exception is raised.

C41401A 1is expected to raise CONSTRAINT_ERROR for the evaluation
of certain attributes, however this implementation derives the
values from the subtypes of the prefix at compile time as allowed
by 11.6 (7) LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT_ERROR is not raised.

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C €45304cC €45502C €45503C €45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B36001W
CD7101F

C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable
because the value of SYSTEM.MAX_MANTISSA is less than 48.

C47004A 1is expected to raise CONSTRAINT_ERROR whilst evaluating
the comparison on line 51, but this compmiler evaluates the result
without invoking the basic operation qualification (as allowed by
11.6 (7) LRM) which would raise CONSTRAINT_ERROR and so no
exception is raised.

C86001F 1is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_IO, and hence
package REPORT, obsolete.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER or SHORT_INTEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

16

TEST INFORMATION

B86001T and C35702A are not applicable because this implementation
supports no predefined floating-point type with a name other
than FLOAT, LONG_FLOAT, or LONG_LONG_FLOAT.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CD1009C, <CD2A41A, CD2A41B, CD2A41E and CD2A42A..J (10 tests) are
not applicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

CD2A611 and CD2A61J are not applicable because this implementation
imposes restrictions on 'SIZE length clauses for array types.

CD2AT1A..D (4 tests), CD2AT72A..D (4 tests), CD2A74A..D (4 tests)
and CD2A75A..D (4 tests) are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
record types.

CD2A84B..I (8 tests), CD2A84K and CD2A84L are not applicable

because this implementation imposes restrictions on 'SIZE length
clauses for access types.

CE2102D 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F 1is inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

CE2102I is inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN
with QUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

17

aa.

ab.

ac.

ad.

ae.

af.

ag.

ah.

ai.

aj.

ak.

al.

am.

an.

TEST INFORMATION

CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESET
with INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET
with OUT_FILE mode for DIRECT_IO.

CE2107C..D (2 tests) raise USE_ERROR when the function NAME is
applied to temporary sequential files, which are not given names.

CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

CE3102I is inapplicable because text file CREATE with OUT_FILE
mode is supported by this implementation.

CE3102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is not supported by this implementation.

CE31118B and CE3115A are inapplicable because they assume that a
PUT operation writes data to an external file immediately. This
implementation uses line buffers; only complete lines are written
to an external file by a PUT_LINE operation. Thus attempts to GET
data before a PUT_LINE operation in these tests raise END_ERROR.

CE3112B is inapplicable because, for this implementation,
temporary text files are not given names.

CE3202A 1is inapplicable because the underlying operating system

does not allow this implementation to support the NAME operation
for STANDARD_INPUT and STANDARD_OUTPUT. Thus the calls of the NAME

18

TEST INFORMATION

operation for the standard files in this test raise USE_ERROR.

ao. EE2401D contains instantiations of package DIRECT_IO with
unconstrained array types. This implementation raises USE_ERROR
upon creation of such a file.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for 1legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 14 tests.
The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B24009A B29001A B38003A B38009A B38009B

B51001A B91001H BA1101lE BC2001D BC2001E BC3204B
BC32058 BC3205D

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the C3 Ada Compiler Version R00-00 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

19

TEST INFORMATION

3.7.2 Test Method

Testing of the €3 Ada Compiler Version R00-00 using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of haraware and software components:

Compiler: C3 Ada Compiler Version R00-00

Host and Target computer:
Machine : Concurrent Computer Corporation 5600
Operating System: RTU Version 4.0A

The Concurrent Computer Corporation 5600 machine is based on a MC68020 CPU
and uses a MC68881 floating point coprocessor.

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded onto a SUN 3/60, and
tranferred via ETHERNET to the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, 1linked, and all executable tests were run on the Concurrent
Computer Corporarion 5600. Results were transferred to a SUN 3/60, via
ETHERNET, and then transferred to a VAX 8350, via DECNET, where they were
printed and evaluated.

The compiler was tested using command scripts provided by SYSTEAM KG
and reviewed by the validation team. Tests were ccmpiled using the command

Smm181/adac -v -1 <file name)
and linked with the command
$mml181/adac -v -m <(test name) -o (test name>.OUT

Chapter B tests were compiled with the full 1listing option. A full
description of compiler and linker options is given in Apendix E.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

20

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at SYSTEAM KG, Karlsruhe and was completed on Friday,
3rd November 1989.

21

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the following Declaration
of Conformance concerning the C3 Ada Compiler,
Version R00-00.

DECLARATION OF CONFORMANCE

Compiler Implementor: Systeam KG

Ada Validation Facility:

Ada Compiler Validavion Capability (ACVC) Version: 1.10
Base Configuration

Base Compiler Name: C3Ada Version: R00-00

Base Host Architecture ISA: Concurrent Computer Corporation 5600

Host Operating System: RTU Version 4.0A
Base Target Architecture ISA: Same as Host
Target Operating System: RTU Version +.0A

Implementor’s Declaration

[. the Undersigned. represencing Systeam KG. have implemented no deiiberate exiensions to the
Ada Language Standard ANSI/MIL-STD-1815A in the compiiers listed in this deciaration. [
deciare that Concurrent Computer Corporation is the owner of record of the Ada language
compilers listed above and. as such. is responsible for maintaining the said compiiers in
conformance to ANIS/MIL-STD-1815A. All certificates and registrations for Ada language
compiier(s) listed in this declaration shall be made only in the owner’s corporate zame.

;e 10. Olctpde. (38

Or. Gegrg Winterstein, President Jata

Owner’s Declaration

I. the undersigned. representing Concurrent Computer Corporation take [ull responsibilicy for
impiementation and maintenance of the Ada Compilers listed above. and zgree to public
disciosure of the final Validation Summary Report. [further agree to continue :o compiy with
the Ada trademark policy, as defined by the Ada Joint Program Office. [declure that ail of the

Ada language compilers listed. and their host/target performance are in compiiance with the
Ada Language Standard ANSI/MIL-3TD-1815A.

< 1a
,;eééw.(:_éu?/ F® gt 1999
eetharama Shastry
Sentor Manager, System Software Development (Date;

i

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the C3 Ada Compiler Version R00-00, as described 1in
this Appendix, are provided by SYSTEAM KG. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation~specific
portions of the package STANDARD are also a part of this Appendix.

¢ Dredefined Language Environment

The predefined language environment comprises the package standard, the language-
defined library units and the implementation-defined library unita.

4.2 The Package STANDARD

The specification of the package standard is outlined here; it containas all predefined
identifiers of the implementation.

The operations defined for the predefined types are not mentioned here, since
they are implicitly declared according to the language rules. Anonymous types (such
a3 umiversal_integer) are not mentioned either.

PACKAGE standard IS
TYPE boolean IS (falsa, true);
TYPE short_integer IS RANGE - 32.768 .. 32.767;
TYPE integer IS RANGE =~ 2.147.483_.648 .. 2_147_483.647;

TYPE float IS DIGITS G RANGE
- 1680.FFFF_FF#E32 .. 16#0.FFFF.FF#E32;

TYPE long-float IS DIGITS 16 RANGE
- 1080 .FFFF_FFFF_FFFF_F8#E258 .. 16#C.FFFF_FFFF_FFFF_FB8¥E256;

TYPE long _long._float IS DIGITS 18 RANGE
-~ 1680 .FFFF.FFFF_.FFFF_FFFF#E40986 ..
1640 .FFFF_FFFF_FTFF FFFF4E4096:
-~ TYPE character IS ... as in [Ada,Appendix C]
-~ FOR character USE ... as in [Ada.Appendix C]

-~ PACKAGE ascii IS ... as in [Ada.Appendix C]

-~ Predefined subtypes and string types ... as in [Ada,Appendix C]

TYPE duration IS DELTA 2#1.0#E-14 RANGE
- 131.072.0 .. 131.071.999_938_964._843_75:;

-~ The predefined exceptions ars as in [Ada,Appendix C]

END standard:

APPENDIX F
IMPLEMENTATICN-DEPENDENT CHARACTERISTICS

4
-~

F.1 INTRODUCTICN

The Ada programming language definition requires every Ada ccmpiiation sysiem to suppiy an appeadix F which
ccntains all implementation-specific aspec:s of e compiler and run-time system.

F.2 IMPLEMENTATION-DEPENDENT PRAGMAS

The following is a list of all pragmas in C’Ada, predefined as weil as impiemennticn-defined:

PRAGMA | IVPLEMENTED | COMMENTS
-
BYTE_PACX | Yes | Allows arrays and recerds to be packed (o the byte levei.
CONTROLLED No Not applicable, becausa no automatic storage reciamation of
. - |unreferencad access objects is performed. The compiete storage
requirement of a coilection is reieased witen it passes out of scope.
ZLABORATE | Yes |Is handled as defined by the Ada language.
EXTERNAL _NAME Yes Allows the association of an exteraal aame with a subprogram aor statieaily
aijocated object.
INLINE Yes | Subprograms are expanded inline rather than cailed.
INTERFACZ Yes] Is implemented for the languages C and Assembler.
LIST | Yes | Is handled as derined by the Ada language.
MEMQRY_SIZZ No You cannot change the aumber of avaiiabie storage units in the
machine configuration, which is defined in package SYSTEM.
QPTIMIZE No Optimization of 3 compiiation cn only be conuailed using the =Q
option on the comoiler comumacd line.
PACX Yes | Allows arrays and records to be packed to the bit level
PAGE Yes {Is handled as defined by the Ada language. |
PRIORITY Yes Is haadled as defined by the Ada language, Priorites berwesa § and
255 are supported.
VOLATILE Yes ’ Prevents the optimizer from eliminating memory references.
F-1

, 48-555 F00 R0O

PRAGMA IMPLEMENTED | COMMENTS
-

SHARED No Naot appiicaple, as every read or write operation 0n a sc3iar oc acsass
type is a synchronization point for that variable in the C'Ada
implemenatdon.

STORAGE_UNIT No You cannot change the aumber of bits in 3 storage unic as defined by
package SYSTEM. “

SUPPRESS No Diiferent types of checks cannat be be switched on and ff for specific
obiec:s: however, see SUPPRESS_ALL.

SUPPRESS_ALL Yes Tais pragma prevents the comoiler from generating any code 0 caeck

- for eorors that may reise CONSTRAINT ZXROR o
NUMERIC_ERROR.
SYSTEM_NAME No You cannot change the system name as defined in package SYSTEM.

F.2.1 Pragma INLINE Restrictions

Inline expansion of subprogram calls occurs only if the subprogram does not contain any
declarations of subprograms, task bodies, generic units, or body stubs. For recursive calls, only
the outermost call is expanded. The subprogram must be previously compiled, and if it is a
gegeric instance, it must be previously completed. If for one or more of these reasons the iniine
expansion is rejected by the compiler, a corresponding warzing message wiil be produced.

F.3 REPRESENTATION CLAUSES

The foilowing subsections describe the restrictions on representation ciauses as defined in Chaprter 13 of the
Reference Manual for the Ada Programuming Language.

F.3.1 Length Clauses .

A length clause specifies the amoust of sterage to be allocated for objects of a given rype. The following is a list of
the impiementation-degeadent acricutes:

TSZE

T STORAGZE_SIZE

TSTORAGE_SIZE

T SMALL

.- ¢ ——————

must be <= 32 for any integer. fixed poiat. or enumeration type. For any type darived
from FLOAT, LONG_FLOAT, ar LONG_LONG_FLOAT, the size must be equal (o the
defauit value seiected by the compiler. These are 32, 64, and 96, respectiveiy. The caly
value allgwed for accass types is 32 (the default value). If any of thesa restrictions is
violated, the compiler will report a RESTRICTION errce,

IF this length clause is applied to a collection, the exact amount of space specified will be
allocated. No dynamic exteasica of the coilection will be perfarmed. If the leaga clause
is not specified, the coilection will be extended auwtomatically wirenever the allocator
new is executed and the coilectan is full.

If this length clause is applied to a task fype, the specified amount of stack space will be
allocated for each task of corresponding fype. The vaiue supplied shouid not be less thaa
1400. If ao [ength clause i3 specified for 2 task type, a defauit value of 10K bytes is
supplied by the compiler. Stack space ailocated for 2 task is never exteaded
automaticaily it am-time. .

There is a0 implemenmticn-dependent reswriction. In panticular, even values of SMALL
which are oot powers of 2 may be chosen.

48-535 F00 R0O

.. . ——— e .

F.2.2 Representation Attributes

The Regresentation anributes listed beiow are 1s specified in the Reference Manual for the Adg Programming
Language, Section 13.7.2.

X'ADDRESS is only supported for objects, subprograms, and interrupt entries. Applied
to any ocher entity, this attriduce yields che value SYSTEMADDRESS_ZERO.
X'siZ= is handled as defined by the Ada language.

R.C'POSITION is handled as defined by the Ada language.

R.C’FIRST_BIT is handled as defined by the Ada language.

R.C'LAST_BIT is handled as defined by the Ada language.

T'STORAGE_SIZE applied 0 an acsess type, this artrioute will retumn the amount of storage currently
allocared for the camresponding collection. The retumed vaiue may vary as coilections
are extended dynamicaily,

T'STORAGE_SIZE for task types or task objects, this anribute is handled as defined by the Ada language.

F.3.3 Representation Attributes of Real Types

This subsection lists all representation auributes for the floating point types supperted:

P'DIGITS yieids the number of decimal digits {or the subrype P, The values for the predefined -
es are 6, 15, and 18 for the types FLOAT, LONG_FL.OAT, and
LONG_LONG_FLOAT, respeczveiy.

P'MANTISSA yields the number of binary digits in the mantissa of P. The follawing table shows the
relationship between 'DIGITS and "MANTISSA: S
DIGITS| MANTISSA ||DIGITS| MANTISSA | -
1 5 10 35
2 8 11 38
3 11 12 41
4 15 13 45
5 18 14 43
6 21 15 51
7 25 16 53
8 28 17 53
9 k) 18 61
43-5355 FO0 ROO F-3

—— - . o — .- .. e
- .- T e e e e——

P'E=PSILCN

P'EMAX

P*SMALL

vields the absolute value of the difference berwveen me modei number 1.0 and the next
model aumber above 1.0 of subtype P:

OO0 ~JOVLN §. LI r—

1670.1#E0 |
1680.22E-01 |
1620.43E-Q2 |
16»"0.-1-‘-»‘8—03]
1650.84E-04 |
1670.12E-04
16#0.1#E-05

1620.2#E-Q6
1630.42E-07 |

DIGITS | EPSILON I{Drcn'sl EPSILON
|==-=—==—-===

11
12
13
14
15
16
17
18

16#0.+E-08
16#0.8%E-09
1670.1#E-09
16#0.13E-10
16%0.27E-11
16#0.43E-12
16#0.42E-13
1650.8%E-14
16#0.17E-14

yields the largest exponent of model numbers fcr suttype 2:

O -1OVn L L)

DIGITS| EMAX lTDrG"rsl EMAX |
20 10 140
32 11 152
a4 12 164
60 13 180
72 14 192
84 15 204
100 16 220
112 17 232
124 18 244

yields the smallest model number of subtype P:

|mGrrsl SMALL ||DIGITS| SMALL

VOO IO B LB

16#0.8%E-05
16#0.84E-08
16#0.8%E-11
1620.84E-15
16#0.34E-18
16#0.84E-21
1620.84E-25
1630.84£-28
1630.84E-31 |

10
11
12
13
14

15 -

16
17
18

16#0.87E-35
16#0.82E-38
16#0.82E-41
16#0.8#E-45
16#Q.8#E-48
16#0.8%E-31
16%0.8#E-33
16#0.8#E-33
1670.8#E-51

43-535 F0O0 ROO

P'LARGZ

yieids the largest model number of the succype 2:

(DIGITS | LARGE

1

e e
i ctod=LV-T RN Y-SRIV

16#0.F3#ED5

16#0.FT#EQ8
1620.FF=#E1L
1680.FFF=#ELS
16#0.EEFF_CFE18
1670.F7r _F3vE21
1620.Frrr _FFB#E2S
16#0.Frrr_rrr+E28
16#80.Frr= _Frr=#E3l
16#80.F7Ft _Frrr_E#E35
16#0.F7=r _Frrr_FCrESS
160.Frrr _Frrr_Fr3sEdl
16#0.FFrr _Frrr _Fro3sEdS

14 1680.Fzrr _Frrr _Frrr#E48

15 1680 F rr _Frrr_Fror _ERES]
16 1680.FFrr FFrr _Forr _FE#E3S
17 1630.Fsrr _Frror _Forr _FTCH#ESS
18 16805 e _Fros _Frrr _FrrasEsl

The following arributes wiil rerurn characenistics of the safe numbers and the implementadon of the floating point

types. For any floating point rype sud P, the irributes beiow wiil yieid the value of the prederined flcating point
onto which e rype P is mapped. For this reasen. only the values icr the types FLOAT, LONG_FLOAT, and

LONG_LONG_FLOAT are givea:

| 128 |
P'SAFE_SMALL 1630.43E -31 16404 E-253 16£0.24E- 4095
P'SAFE_LARGE 1650.1FFF FF$E32| 16%#0..LFFF_FFFF | 16%0.3FFF_FFFF_FFFF

| FFFF_FC#E256 |FFFF#E4096
P'MACHINE_ROUNDS TRUE TRUE | TRUE .
P'MACHINE_OVERFLOWS | TRUE TRUE | TRUE
P"MACHINE_RADIX |2 |2 : |2
P’"MACHINE_MANTISSA |24 53 |64
P*MACEINE_EMAX |128 1024 | 16384
P*MACEINE_EMIN |-128 -1021 |.16382

F.3.4 Reprasantation Attributes of Fixed Point Types

For any fixed poiot type T, the representation atributes are:

TMACHINE_ROUNDS

TRUE

TMACHINE_OVERFLOWS TRUE

48-335 F20 R0O

F-3

F.2.S Enumeralion Regresentation Clauses

The integer codes spesified for each enumeradien fiteral has to lie within the range of the largest integer tyre of the
implementaticn (whica is INTEGER). The eaumeration taole size is determined by the following geaeric functica:

generic
type INUMERATION_TVYPE ig (<>);
function INUMERATION_TABLE_SIZE zretur= NATURAL:
function EINUMERATION_TABLE_SIZZ retuzm NATURAL is
RESULT : NATURAL := O:
begin
for I in ENUMERATION_TYDPE'RANGE
loop
declare
subtype E is INUMERATION_TYPE range I ,. I:
begia ’
RESULT := RESULT + 2 + E'WIDTH:
end;
end loop;

. Tstuza RESULT:
end ENUMERATION_TABLE_SIZE:

F.3.6 Record Reprasentation Clauses

With a record representation clause, the programmer can define the exact [ayout of 2 recocd in memory. Two types
of representatica clauses are supported: alignment clauses and compoaent ciauses,

The value given for an alignment clause must be sither 0, 1, 2, or 4. A record with an alignment of Q may scart
agywiiere in memocy. Values other than 0 will force the record to start oa 3 byte address which is 3 multiple of the
specified value. If any value ather than 0, 1, 2, or 4 is specified, the compiier wiil repart a RESTRICTION error.
For component clauses, the specified range of bits for 2 component must aoc be greater than the amount of storage
Qccupied by tat component. Gaps within a recerd may be achieved by nc: using scme bit ranges in the record,
Violauon of these restricions wiil be flagged with a RESTRICTION error message by the compiler.

Ia some cases, the compiler wiil generate exwra components for a record. Thesa cases are:

* If the record contiins 3 variant part and the difference between the smallest and the largest variaac is greater
than 32 bytes and

- it bas more than one discriminant or
- the discriminant can hold more than 255 values.
[n these cases, an extra component is geaerated which hoids the actual size cf the record.

¢ If the record copnains array oc record components whose size depend on discriminants. In this case, one exza
compecanent is generated for each such component holding its offset in the record relative to the componeat

generated.

The compiler does not generate names for these extra components. Therefore, they cnnot be accessed by the Ada
programt. Also, it is act possible to specify represenaition clauses for the components generated.

48-535 £00 R0OO

F-$

-—- - L m——— e e e e % o -e - i = - e

F.4 ADDRESS CLAUSES

Address clauses cn te used to ailocate 1n object at a specific location in the computer’s address space orto
associate 1 wsk entry with an interrupt.

Address clauses are supparted for objecs declared in an objec: declaration and for task entries. If an address clause
is specified for 2 subprogram, package, or fask unit, the compiler will report a RESTRICTION error.

For an object, an address clause causes e object 0 start at the specified location.

6.4.1 Interrupt Entries

Address ciauses are supported for task enwies. An address clause applied to a task entry enables an operating system
signal to initiate an eatry call to that entry. The address supplied in an address clause for a task entry must be one cf

the constants declared in package SYSTEM for this purpose.

The interrupt is mapped onto an ordinary enay call. The eatry may aiso be cailed by an Ada enay call statement.
However, it is assumed that there are no eaxy calls waiting for the same entry wien an dterrupt ocours. Otherwise,

the program is erronecus and behaves as foilows:

* [f an eawy call ca behalf of an interrupt is pending, the interrurt pending is lost,

* If any entry all on behaif of an Ada eatry il sratement is pending, the interrupt entry cail takes precedence.
Tlie renadezvous on behalf of the interrurt is perfermed before any ather rendezvous.

F.2 PACKAGE SYSTEM
The Ada language definition requires every implementaticn to supply a package SYSTEVL. In additon to the

declarations reguired by the language, paciage SYSTEM inciudes dafinitions of certain coafiguraticn-dependent
charagreristics. The specification foc the C’Ada implementation is given below.

packaga SZST=EM is

type ADDRESS is privats;

ADDRESS_NULL : constant ADDRESS;
ADDCRESS_2ZR0O : constant ADCRESS;

ADDRESS; RIGHT : INTEGER) returm ADDRESS;
INTEGER; RIGAT : ADDRESS) return ADDRESS;

function "+" (LE=T
function "+" (LEZTT
funckion "-" (LEST
funection "-" (LE=T

ADDRESS; RIGHT INTEGZR) return ADDRESS;
ADDRESS; RIGAT ADDRES3) return ADDRESS;

3]
s o0 oe se

functicn SYMBEQLIC_ADDRESS (SMBCL : STRING) return ADDRESS;

tyre NAME is (CCUR_MCS3K);
SYSTEM _NAME : conscant NAME := CCTUR_MCSEX;

STCORAGE_UNIT : constant := §;
MEMCRY_SIZE : constant :x 2 ** 39
MIN_INT ! qonstant := - 2 ** 31;
MAX INT : constant := 2 ** 31 - 1;
MAX DIGITS : ¢onstant := 18;

MAX MANTISSA : constant := 31;

FINE _DELTA : constant := 2.0 ** (-31);
= : constant := 1.0 / 60.0;

type UNSIGNED_SHAORT_INTEGER is range 0 .. 63_S3S;
type UNSIGNED_TINY INTEGER is range 0 .. 285;

hw s e

—— —— . 4

48-553 FOQ Ro0

— ~ mea - .- . T —— ———— ————— e 5 s . Se———————————

F-3

‘::r UNSIG'ED _SHCRT_INTEGER
or UNSAUN&D TINY_ *NTEGZR SItZ use 3;

subtyre 3YT:

suStype ADDRESS_RANGE is NTEGER;

subtype PRIQORITY

type SIGIAL is (
SIGNAL NULL,
SIGNAL HANGUP
SIGNAL INTERRUPT,
SIGNAL QUI™,
SIGNAL ITLIGAL INSTRUCIICN,
SIGNAL TRACE T‘!AP
SIGNAL ABCRT
SIGNAL =MT_ INS‘I'RUC" ON,
SIGNAL FI.OATI‘IG POQINT_ERROR,
SIGNAL XILL,
SIGNAL_3US_ERROR,
SIGNAL SEGMENTATION _VIQLATICHN,
SIGNAL 3AD ARGL‘V.E'..‘FI‘ Ta S';'S‘Z‘E:d CAL...
SIGNAL PIPE _WRITE,
SIGNAL ALARM,
SIGNAL TERMINATE,
SIGNAL_USER 1,
SIGNAL USER _ Z
SIGNALTCHEILT,
SIGNAL PCWER RESTORE.
SIGNAL STCP,
SIGNAL T=: AL_STOP,
SIGNAL CONTINUE,
SIGNAL_TERMINAL INPUT,

) SIGNAL_TERMINAL_QUTSUT,

SIGNAL INPUT CH.ARACZE,
SIGNAL_C=2U ".‘I."G _LIMIT EXCEEXDED,
SIGNAL II.:. S.I.Z" LIMIT ' _ZXCE=DED,
SIGNAL _WINDOW RESJ.Z:D'

SIGNAL _QUT_OF BAND _DATA_ON_SOCXET,
SIGNAL_VIRTUAL '!.’IMER ALIRM,
SIGNAL PQOFII.ING TIMER _ALARM,
SIGNAL_IO_IS “OSSJ.BI«-J

== SIGNAL_NULL RET

SIGNAL_] HANGU? '-22"

S.LQIAL .’NTSR.RUP"‘ RET

SIGNAL _QUIT_RET

-— SJ.GJAL II.L..GAL INSTRUCTICON REZ
SIGNAL T‘UAC.'.'. TRAZD RE'."

S.LGNAL ABQORT RE:‘

SIGNAL_] _BEMT_ INSTQDC"‘ICN REZ :

- S.LG‘JAL r..OATING POI.NT ZRROR_RET
-- SIGNAL_. KITL RET

-- SIGHAL_: _30S "'-t.RCR _REF

-~ SIGNAL S;GENTA"‘ION VICLATION RETFT
SIGNAL_ BAD _ARGUMENT TO_. S'[S'I"’! carLL REZ
SIGNAL_ PI'."-" , _WRITS REY :

-- SIGNAL ALARM REF

SIGNAL TSRMINAT" REF

-- SIGNAL _USER_1 REZ-'

SIGNAL US“". 2 R.E:‘

-

SIGNAL_CHILS Re¥
SIGNAL_POWER_RESTORE_RET
-~ SIGNAL_STOP_REF

SIGNAL MAL oS TOP_RET

Z’SIIZ use 16;

2 oo s .

is UNSIGUED_ TINY_INTSGER;

is INTEGER range ¢ .. 255;

intentionally omitzed
constant ADDRESS;
canstant ADDRESS:;
canstant ADDRESS;
intentionally cmitsed
censtant ADDRESS;
cInstant ADDRESS;
constant ADDRESS;
intentionally omitted
intenticnally comitted
intentionally cmitted
intentionally comitied
constant ADDRESS;
constant ADDRESS;
intenticnally omibtted
constant ADDRESS;
intentionally cmitited
constant ADDRESS;
constant ADDRESS:;
constant ALDRESS:;
intentionally omitted
constant ADDRESS;

— o« —

48-555 F00 R0O

SIGUAL _CINTINUE _RET ! ccnstant ACDRESS:

sS=aNAL” "“.‘.:’.MT‘!A... INPUT_RET ! <zastant ACLCRESS:;
S:GNAL SEMINAL CU':‘P""" RET ! eZnstant ALCCRESS:;
:G:-h.. IPUT C‘I:\RAC:ER RET ! constant ADDRESS:;
SZGNAL U TIME _LIMIT ...(..__ED _REF ¢! <snstant ACDRESS;
S:G‘IAJ:. "".‘I.:: sI2Z r.'\a- sxr::“.-.z _R=EF : csnstant ADDRESS;
S~G‘JAL_HINDCW RES 2D L" : ccnstant ADDRESS;
SIGNAL_QUT_QF_3AND DA"‘A ON_SCCXET_REFT : constant ADDRESS;
SIGNAL_VIRTUAL TDMER_ALXRM RET : constant ADBRESS;
SIGNAL_PROFILING TIMEX_ALARM_RET : constant ADDRESS;
SIGNAL_IQ_IS_POS3IZLE_ oy : canstant ACDRESS;

tyve EXCEPTICN_ID is new INTEGER;
NQ_EXCE2TION_ID ¢ constant EXCEPTICN_ID := 03 .
~-- Cading of the predefined excepticns:

constant ZXCERPTION ID = ...
csastans EXCE2TION ID = ...
cnstant EXCEPTION ID := ...
constant EXCEFTICN ID 1= ...
cznstant EXCEPTICN ID := ..

CCNSTRAINT ZRROR_ID
NOMERIC ZRRCR_ID™
PRCGRAM | _IRRCR_ID
STCRAGE _ “IRRCR_ID
?ASMVG IRRCR_ID

!
)

s 4o se se oo
.8 %p we Ne N

!

canstant EXCZITICN ID
ccnstant EXCERTICN ID
csnstant EXCEPTICN ID
snstant EXCE2TICN ID
constant EXCEZTION ID
canstant EXCE3TICN ID
cznstant EXCEITION ID
constant ZXCEPTICON ID

s e e

STATUS_EXROR_ID
MCDZ_ERRCR_ID
NAME_EZRROR_ID
USE_ZRRCR_ID
DZVICT_ERROR_ID
END_ZRROR_ID
CATA=RROR_ID
LavcUT_=RRGR_ID

e e

e 80 24 ¢ @0 08 e s
L T I I VI I
e %S v gy ws wh wpy n,

TIME_ERROR_ID ! constant EXCEPTION_ID := ... ;
NO_EXRRCR_CQDE ! constant := C;

tyre EZUCEFTION INFORMATICN
is record -
EXC2_ID 1 EXCEPTICON_ID;
<= Identification of the exception. The ccdings of
-~ the predefined excepticns are given telow.

CCDE_ADDR : ADDRESS;
~- Cade address where the excaption occurred. Derending

~- on the kind of exception, it may be the address of
~- the instzuction whicli caused the excsption, or
~=- the address of the i:zst:'.xc‘:ion which waould
-~ have been executed i1 the exception had not ocsurrsd.
SIGHAL : S'ZSI':‘!.S.:.GNAL;
~= Signal that caused this excepticn to be raised,
~-- else signal null,
end record;

procedure GET_EXCEITION _INFORMATICN
(EXC? INFO : cut EXCE2TION_INFORMATION) ;

funciicn INTEGER TO_ADDRESS(ACDR : ADDRESS_RANGZ) returnl ADDRESS;
function ADDRESS 'I'O MVC-E(ADDR : ADDRSSS) return ADDRESS _RANGZE;
pragma INLINE (INTEGZX_TO_ADCORESS, ADDRESS_TO_INTEGER) ;

-- Canversion between address and integer types.

type EXIT STATUS is new INTEGER range (0 .. 2**8-1;
NORMAL EXIT : constant EXIT_STAIUS := 0;

48-555 F00 R00 F-9

ZERRNO : INTEGER;

far ZRRMC usa ac SMECLIC_ADDRESS (" e::“::"‘;
-~ Allcws aczess %o the arTno sat by the last svstam call, C, or
-- assemcler rcutine call that was macdes cn menhal? of the calling
-=- task.

procedurse IXIT PRCC:S;(S“AZUS : in EXZIT _STATUS := NCRMAL _IXIT)
-- Terminates the ada pragram with tle -allcw:.nc; actions:

-= All Ada tasks are abor'ad and the main program exits.

-= All I/0 buffers are flusped, and all cpen filestare clcsad.

private
~- Inplementation [efined

end SYST=M;

F.6 TYPE DURATION

DURATION"SMALL is 2 secends. This number is the smallest power of rvo which can regresent the sumber of
seconds in 2 day in loagword fixed point number represenaton.

SYSTEM.TICX is equal to 1.0/ 60.0 seconds. DURATION’SMALL is significzntly smaller than the actual
computer clock-tick. Therefore, the accuracy with wnich you can specify a delay is Limited by the 1ctuai clock-tick
and not by DURATION'SMALL. The following tacle summarizes the characreristics of the type DURATION:

ATTRIBUTE ‘ VALUE APPROXIMATE
_ VALUE
DURATION'DELTA |2#1.0¢E-14 |=6lus
) DURATION'SMALL |2#1.02E-14 | =61 us
DURATION'FIRST |-131072.00 | = 36 hrs
DURATION'LAST |131071.99993896484375 | = 36 ars
|DURATION'SIZE |32 l

F.7 INTERFACE TO OTHER LANGUAGES

Pragma INTERFACE is impiemented fer two progranuming languages: C and Assembler. The pragma has the form:
pragma INTERFACZ (C, suoprogram_name) ;
pragma INTERFACE (AS'S":.HBL'-:R, subprogram_name) ;

Eere, subprogram_name is a subprogram deciared in the same compilation unit before the pragma.

The only parameter mode supported for subprograms written in the C language is IN. The only

‘types allowed for parameters to subprograms written in the C language are INTEGER,
LONG_FLOAT, and SYSTEM.ADDRESS. These restrictions are not checied by the compiier.

Detils on interfacing to other languages are given in Caapters 7 and 8.

F-14 48-555 F00Q R00

F.8 INPUT/OUTPUT PACKAGES

The following two system-dependent parameters are used for control of extemali files:

¢ the NAME parameter
¢ the FORM parameter

The NAME parameter must be a legal RTU pathname conforming to the foilowing syntax:

pathname ::= (/) (dimame (/ dimame }/) filename

dirname and filename are strings of up to 14 characters length. Any characters except ASCILNUL, * * (blank), and

'/" (slash) may be used.

The following is a list of all Keywords and possible values for the FORM parameter in alphabetical order.

APPEND => FALSE | TRUE

MODE => numeric_literal

RECORD_FORMAT a> VARIABLE | FIXED

RECORD_SIZE => numeric_literal

48-353 F00 R0OO

Only applicable to sequential and text files. If TRUE is specified
in an OPEN operation, the file pointer is positioned to the end of
the file. This keyword is ignored in 3 CREATE operation. The file
mode must be IN_FILE. The default is APPEND =»> FALSE.

This value specifies the access permission of an extemal file. It
only takes erfect in 3 CREATE operation. It is ignored in an OPEN
operation. Access rights can be speciiied for file owner, group
members. and all users. The numeric_literal has to be a three digit
octal number. The single bits of this number have the following
meaning:

8#400# read access owner
842004 write access owner
g#100+# execute access owner

8#040# read access group
8#020# write access group
8#010# execute access group
8#004# read accessall
8#002# write access all
8#001# execute access all

You can specify any sum of the above. The default vajue is
84#666# which is the maximum access right.

Please note that the RTU operating system will subtract the
process’s file mode creation mask from the mode you have
specified. You can change the file mode creation mask with the
RTU command umask (see the RTU Programming Manual). For
example, if your session has a file mode creation mask of 8#022#
and you create a file with mode 8#666+#, the file will actuaily be
created with the privileges 87644,

This parameter is only allowed for sequential files. The default
value is YARIABLE.

Cnly applicable to sequentiai and direct files. It specifies the
number of bytes in one record. This parameter is only allowed for
files with a fixed record length. When specified in an OPEN
operation, it must agree with the corresponding value of the
external file. If ELEMENT_TYPE is a constrained type, the

F-11

maximum size of ELEMENT_TYPE rounded up to the next byte
boundary is selected by default. If ELEMENT_TYPE isan
unconstrained armay type and you want a fixed record length file,
this parameter must be specified.

TRUNCATE => FALSE | TRUE Qualy applicable to sequential files. The FILE_MODE must be
QUT_FILE. When TRUE is specified in an OPEN operation, the
file size is truncated (o zero. The previous contents of the file is
deleted. If FALSE is specified, the file is not changed initially. If
less records than the initial file size are written, old records will

remain unchanged in the file. This parameter is ignored for
CREATE operations. The default value is TRUE.

F.8.1 Text Input/Qutput

There are two implementation-dependent types for TEXT_IO: COUNT and FIELD. In C'Ada, they are implemented
as:

type COUNT is range 0 .. INTEGER’LAST;
subtype FIELD is INTEGER range 0 .. S512;

The line terminator is implemented by the character ASCILLF, the page terminator by ASCIL.FF. There is no
character for the file terminator. End of file is deduced from the file size.

F.9 UNCHECKED PROGRAMMING

F.9.1 Unchecked Storage Deallocation

Unchecked storage deallocation is not supported.

F.9.2 Unchecked Type Conversion

The generic function UNCHECKED_CONVERSION is supported as specified in the Reference Manual for the Ada
Programming Language, Section 13.10. However, the following restrictions apply:

The generic parameter TARGET must not be an unconstrained array type. If TARGET'SIZE > SOURCE'SIZE, the

resuit of the conversion will be unpredictable. On the other hand, if TARGET"SIZE < SOURCE'SIZE, the left-most
bits of the source will be copied to the target.

F-12 48-535 FOO R0O

F.10 IMPLEMENTATION-DEPENDENT RESTRICTIONS

The following is a list of limitations of the compiler:

* The maximum length of a source line is 255 characters.

* A program library may contain no more than 16381 compilation units.

* A singie compilation unit may not contain more than 65534 lines of Ada source text. (Depending oa the
complexity of the code, the actuai number of lines acceptable may be considerably smaller than the upper
limit.)

* The number of directly imported units for a singie compilation unit may not exceed 63. Directly imported
units are those referenced by with clauses. '

¢ The maximum number of nested separates is 100.
+ The main program must be a parameteriess procedure.

* The maximum length of an identifier is 255 (maximum line length). All characters of an identifier are
significant.

* The maximum number of bits of any object is 2*! - 1.

» The maximum length of a file name is 2535 characters.

* The maximum length of a listing line is 131 characters.

* The maximum number of errors handled is 1000.

* The maximum oumber of units that may be named in the pragma ELABORATE of a compilation unit is 63.
* The maximum total size for text of unique symbols per compilation is 80000 bytes.

» The maximum parser stack depth is 10000.

* The maximum depth of nested packages is 100,

* The maximum length of a program library name is 242 characters.

* The anribute ADDRESS is not supported for packages, labels, and entries that do not have an address clause
applied to them.

48-355 F00 R0OO F-13

F.11 UNCONSTRAINED RECORD REFRESENTATICN

Cbjects of =n uncensyined record vpe with amay comocnents based on the discriminant are allocated using the
discriminant vaiue sugpiied in tie coject declaraticn. However, if no discriminant is suopiied in the cbject
deciartion, the compier wiil choose the maximum possitle size. For exampie:

type DYNAMIC__REC:RD { LINGTH : NATURAL := 10) is
racard s
STR : STRING (1 .. LINGTH)
end record;

DSTR : DYNAMIC_STRING;

For the record DSTR, the Compiler would attempt to allocate NATURALTAST bytes.
However, this is more than 2 GBytes. As a consequence, CONSTRAINT_ERROR would be
raised. On che other hand, the declaration

CSTR : DYNAMIC_STRING (80);

causes no problems, The compiler would allocate 84 bytes for CSTR.

F.12 TASKING IMPLEMENTATION .

The C'Ada system implements fully pre-emptive 1d priociry~driven tasking. Pre-emprive meaas that task switczes
may t2ke piace evea whea the currenty running task does not voluntariiy give up processor ecntrol. Tais may
happen witea a task with 2 high prioriry is waiing on an external event (time period specified in a delay satement
expires). When this event occurs, processor conuoi is passed to the waitiog ask immediately if it has the highest
pricrity of the tasks ready to rua.

The C'Ada run-time system keeps track of all tasks in two categories: @asks which are ready to run and those that are
suspended because they are waiting for something (e.2., 3 rendexzvous o oczur or waiting in a deiay statemeat), Tae
tasks ready 10 run are sorted in a queue by pricrity (high priocities {irst). Within one pricrity, they are soeted in the
order in which they eatered the “ready” state (tasks waiung longer are served first). Whenever the run-time system
needs a task (@ schedule, the first task in the queue is selected and run. :

The accuray of delay statements is goveraed by the resolution of the ocerating system clock which is 1.0/60.0
secends (SYSTEM.TICX). Althouga the resofution of the type DURA — DN is much higher (Z** seconds), task
switchies caused by the expiration of a delay can cnly take piace on a Jiock tick. A task waiting in a delay enters the
"ready” state wiea the next clock tick after its delay period has expired.

Anocther impiementation-dependent asgect cf asking is the stack size of each task. All task objects of 1 ask fype
with a length clause and all tasks of an anonymous rask type have 1 stack space of 10K bytes. For task types, a
length ciause may be given. The specified amouat of storage space wiil be ailocated for each task objecs of that type.

In addition to stack space, a task a control block is allocated for each task objecs. It ‘occupies
o - . N . .

250 + 20" number_of_cntrics bytes. The task control block is deallocated when the task passes
out of scope. —_— . -

A program is errcoeous if any of the following cperations can be perfarmed simultanecusly by more than one task:

* The allocater new is evaluated for the same coilection.

* Input-Output operations re performed on the same external fle.

A C’'Ada task is oot implemented as an independent operating system procass; rather, the whole Ada program is one

by

operating system process.

F-14 48-553 F00 R00

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must he substituted for each of these names
before the test 1is run. The values used for this validation are given
below:

Name and Meaning Value

SACC_SIZE 32
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

type.

S$BIG_ID1 254 * 'A' & 'l
An identifier the size of the
magximum input line length which
is identical to $BIG_ID2 except
for the last character.

SBIG_ID2 254 * 'A' & '2°
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 127 * *A' & '3' & 127 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

Name and Meaning

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT_LIT
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1
A string literal which when
catenated with BIG_STRING2
yields the image of BIG_IDI.

$BIG_STRING2

A string literal which when

catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.
$SBLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.
SCOUNT_LAST
A universal integer
literal whose value is
TEXT_I0.COUNT'LAST.
SDEFAULT_MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY_SIZE.
$DEFAULT_STOR_UNIT
An integer literal whose value

is SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

Value

127 * 'A’' & '4' & 127 * 'A’

252 * '0' & "298"

250 * 'Q' & "690.0"

g 127 * A & M

Mt g 127 % AT & 'L &

235 *

2147483647

2_147_483_648

Name and Meaning

$DEFAULT_SYS_NAME

The value of the <constant
SYSTEM.SYSTEM_NAME.

SDELTA_DOC
A real literal whose value 1is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

SFIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAME1l
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAME2
An external file name which
is too long.

TEST PARAMETERS

Value

CCUR_MC68K

2#1.0%E-31

512

NO_SUCH_FIXED_TYPE

LONG_LONG_FLOAT

0.0

200_000.0

255

nodir/filel

wrondir/file2

Name and Meaning

SINTEGER_FIRST
A universal
whose value 1is

integer literal
INTEGER'FIRST.

SINTEGER_LAST
A universal
whose value 1is

integer 1literal
INTEGER'LAST.

SINTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

SMAX_DIGITS
Maximum digits supported for
floating-point types.
SMAX_IN_LEN
Maximum input line length

permitted by the implementation.

SMAX_INT
A universal
whose value 1is

integer 1literal
SYSTEM.MAX_INT.

SMAX_INT_PLUS_1
A universal integer literal
vhose value is SYSTEM.MAX_INT+1.

TEST PARAMETERS

Value

-2147483648

2147483647

2147483648

-200_000.0

31

18

255

2147483647

2147483648

Name and Meaning

$MAX_LEN_INT_BASED_LITERAL

A universal integer based
literal whose value is 2#11#$
with enough leading zeroes in

the mantissa to be MAX_IN_LEN
long.

SMAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value 1is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
characters.

SMIN_INT

A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

SMIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;:" as the only statement in

its body.
SNAME
A name of a predefined numeric

type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

gseparated by commas.

SNEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

TEST PARAMETERS

Value

"2:" & 250 * 0" & "11:"

"16:" & 248 * 0" & "F.E:"

et & 253 * AT & T

~-2147483648

32

NO_SUCH_TYPE

CCUR_MC68K

164FFFFFFFE#

Name and Meaning

SNEW_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT_MEM_SIZE. If there 1is
no other value, then use
SDEFAULT_MEM_SIZE.

$NEVW_STOR_UNIT
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. If there is
no other permitted value, then

use value of SYSTEM.STORAGE_UNIT.

SNEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK
A real literal whose value is
SYSTEM.TICK.

TEST PARAMETERS

Value

2_147_483_648

CCUR_MC68K

32

1.0/60.0

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that nust appear at the top
of the page.

b. A390056G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective

wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF _THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none

of the units is illegal with respect to the units it depends on;
by AI-00256, the 1illegality need not be detected until
execution is attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

g. CD2A63A..D, CD2A66A..D, CD2AT3A..D, CD2A76A..D (16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the

WITHDRAWN TESTS

parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may locop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

CD2B15C & <CD7205C These tests expect that a 'STORAGE_SIZE
length clause provides precise con- trol over the number of
designated objects in a collection; the Ada standard 13.2:15

allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a

derived fixed-point type must be representable values of the
parent type. - :

CD50078B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

ED7004B, EDT7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas:; the AVO
withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to
CALENDAR.CLOCK change by at least SYSTEM.TICK: however, by
Commentary AI-00201, it 1is only the expected frequency of

change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA_ERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada

standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

VITHDRAWN TESTS

CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

CE3301A This test contains several calls to END_OF_LINE &
END_OF_PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and cthe test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

This appendix contains information concerning the compilation and linkage
commands used within the command scripts for this validation.

-1

=id

-A

~C

-0

!

-V

Default Values for Compiler Start Options

The option conctrols the generation of source listing. The default action is not to
generate the complere source listing.

This option specifies the name of the fle or the directory for the listing Sle. By
defauit, the warning and error messages are directed to stdouc.

This option specifies [d options such as object files, archives. Bv defzult. 10 !d
options are passed.

This option controls the generation of assembly listing for the sourcze being compiied.
Bv default, no assembiy listing is generated.

This option controis the copying of source iie being compiled into the library. By
Jefault. source file is not copied into the library.

This option causes the suppression of all run-time checks. The deiuuit action is to
generate code {or ail run-time checks.

This option controis the optimization periormed by she compiler. The defauit option
{1} is to perform optimization.

This option controls the iniine expansion of subprograms that have the pragma
INLINE specified. The defauit action (1) is to perform the iuniine expansion of
subprograms for whnich the pragma NLINZ has been specified.

This option directs the compiler to oniy perform Svntax analvsis. The defauit is o
perform the compiete compiiation of the suppiied source program.

This option causes the compiler to produce the compiier version aund information
messages to be displaved. The defauit action is to suppress -he lisplay o such
optlions.

